Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131523, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608987

RESUMO

Rice and quinoa starches are modified with short-chain fatty acids (SCFA) with different SCFA acyl chain lengths and levels of modification. This work is aimed to investigate the impact of modifying rice and quinoa starches with short-chain fatty acids (SCFAs) on various physicochemical properties, including particle size, protein and amylose content, thermal behavior, pasting characteristics, and in vitro digestibility. Both native and SCFA-starches showed comparable particle sizes, with rice starches ranging from 1.58 to 2.22 µm and quinoa starches from 5.18 to 5.72 µm. SCFA modification led to lower protein content in both rice (0.218-0.255 %) and quinoa starches (0.537-0.619 %) compared to their native counterparts. Esterification led to the reduction of gelatinization and pasting temperatures as well as the hardness of the paste of SCFA-starches were reduced while paste clarity increased. The highest level of modification in SCFA-starch was associated with the highest amount of resistant starch fraction. Principal component analysis revealed that modification levels exerted a greater influence on starch properties than the types of SCFA used (acetyl, propionyl, and butyryl). These findings is importance in considering the degree of substitution or level of modification when tailoring starch properties through SCFA modification, with implications for various applications in food applications.

2.
Food Res Int ; 139: 109837, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509462

RESUMO

Resveratrol is a photosensitive, bioactive molecule which has received increasing research interest during the past decade for its antioxidant properties. However, it has low solubility in water or common triglyceride oils. Resveratrol solubilization in oil can only be achieved in essential oils, such as flavour oils, but the stability of emulsions produced with this type of oils is low as they are prone to creaming phenomena and Oswald ripening. In this study, resveratrol was first dissolved in orange oil which was mixed into a medium-chain triglyceride (Miglyol) at different ratios and used as the internal phase of oil-in-water emulsions (O/W). The emulsions were stabilized by octenyl succinic anhydride (OSA) modified rice starch granules using two different ratios of starch particle:oil to study the influence of interfacial coverage on the final emulsion droplet size and emulsion stability. The results of this study indicated that stable Pickering emulsions could be prepared using OSA-modified rice starch granules even at partial coverage conditions. Emulsions prepared at an oil fraction of 0.5 using 30% v/v mixture of orange oil in Miglyol as the dispersed phase seemed to be an appropriate resveratrol carrier system, obtaining encapsulation efficiency values close to 90% which results in emulsions with a resveratrol concentration of 8.45 mg/L. Hence, the emulsions prepared are suitable for food fortification applications.


Assuntos
Oryza , Emulsões , Tamanho da Partícula , Resveratrol , Amido
3.
Carbohydr Polym ; 250: 116938, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049850

RESUMO

Starch nanoparticles (SNPs) are a promising choice for the strategic development of new renewable and biodegradable nanomaterials for novel biomedical and pharmaceutical applications when loaded with antibiotics or with anticancer agents as target drug delivery systems. The final properties of the SNPs are strongly influenced by the synthesis method and conditions being a controlled and monodispersed size crucial for these applications. The aim of this work was to synthesize controlled size SNPs through nanoprecipitation and microemulsion methods by modifying main operating parameters regarding the effect of amylose and amylopectin ratio in maize starches. SNPs were characterized by size and shape. SNPs from 59 to 118 nm were obtained by the nanoprecipitation method, registering the higer values when surfactant was added to the aqueous phase. Microemulsion method led to 35-147 nm sizes observing a higher particle formation capacity. The composition of the maize used influenced the final particle size and shape.

4.
Carbohydr Polym ; 240: 116264, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32475554

RESUMO

Acetylated, propionylated and butyrylated rice and quinoa starches at different levels of modification and starch concentrations, were used to stabilize oil-in-water starch Pickering emulsions at 10% oil fraction. Short-chain fatty acid modified starch Pickering emulsions (SPEs) were characterized after emulsification and after 50 days of storage. The particle size distribution, microstructure, emulsion index, and stability were evaluated. An increase in starch concentration led to a decrease of emulsion droplet sizes. Quinoa starch has shown the capability of stabilizing Pickering emulsions in both the native and modified forms. The emulsifying capacity of SPEs was improved by increasing the chain length of SCFA. Modified quinoa starch with higher chain lengths (i.e. propionylated and butyrylated), at higher levels of modification, showed higher emulsion index (>71%) and stability over the entire 50 days storage. At optimized formulation, SCFA-starch particles have the potential in stabilizing emulsions for functional foods, pharmaceutical formulations, or industrial food applications.


Assuntos
Chenopodium quinoa/química , Emulsões/química , Ácidos Graxos Voláteis/química , Oryza/química , Amido/química , Tamanho da Partícula , Reologia
5.
Carbohydr Polym ; 201: 416-424, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30241837

RESUMO

Small granular starches from rice, quinoa, and amaranth were modified with octenyl succinic anhydride (OSA) at 5 defined intervals (0-3.0%) and investigated with respect to emulsifying capacity and stability. Starch granule surfaces were characterized by Brunauer-Emmett-Teller and contact angle measurements. Emulsifying capacity was characterized by multiple light scattering (MLS) and particle size analysis. Stability towards environmental stress was characterized by centrifugation and MLS. Surface hydrophobicity and emulsifying capacity correlated with starch type and modification level. Quinoa stabilized emulsions had the smallest droplet size (e.g. 59.2 µm at 3.0% OSA) and superior stability, both before and after centrifugation, especially at the lowest modification levels. Rice and amaranth had larger droplets (99.8 and 84.1 µm at 3.0% OSA respectively). Amaranth, despite its small size showed poorer performance than quinoa, especially at lower modification levels. The higher emulsifying efficiency of quinoa starch granules attributed to the higher protein content.

6.
Carbohydr Polym ; 175: 473-483, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917891

RESUMO

Small granular starches from rice, quinoa and amaranth were hydrophobized by esterification with octenyl succinic anhydride (OSA) in an aqueous alkaline slurry to obtain series of modified starches at defined intervals (i.e. 0.6, 1.2, 1.8, 2.4, 3.0%). The physical and the physico-chemical properties of the starch particles were characterized by proximate analysis including protein level, amylose level and dry matter. The shape and size of the starch granules were characterized by scanning electron microscopy and light scattering. The gelatinization properties were characterized by differential scanning calorimetry. The degree of modification was determined by titration with NaOH. With regard to the emulsion formulation and in order to assess the emulsifying capacity of the small granular starches, the effect of starch type, degree of modification and starch concentration on the resulting emulsion droplet size were evaluated by light scattering and optical microscopy. Emulsifying properties were found to depend on the degree of substitution, size of the granules and the starch to oil ratio of the formulation. Quinoa starch granules, in general, had the best emulsifying capacity followed by amaranth and rice. However, in higher starch concentrations (>400mg/mL oil) and adequate levels of OSA (3.0%) amaranth performed best, having the smallest size of starches studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...